Reg. No. : \square

Question Paper Code : 40262

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Fifth Semester
Electronics and Communication Engineering
MA 1251 - NUMERICAL METHODS
(Common to Information Technology)
(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. State fixed point theorem.
2. Define diagonally dominant system.
3. Compare the Lagrange's interpolation formula and Newton's forward difference formula.
4. Show that $\nabla^{3} y_{3}=\Delta^{3} y_{0}$.
5. Write down the formula to get first and second order derivatives using Newton's backward difference at $x=x_{n}$.
6. State two point Gaussian quadrature formula for integration.
7. Given $\dot{y}^{\prime}=x+y, y(0)=1$ find $y(0.1)$ by Euler's method.
8. Write down Milne's predictor and corrector algorithm.
9. State the implicit formula to solve the one dimensional heat equation $u_{t}=\alpha^{2} u_{x x}$.
10. For what value of λ, the explicit method of solving the hyperbolic equation $u_{t t}=c^{2} u_{x x}$ is stable, where $\lambda=c \frac{\Delta t}{\Delta x}$.

$$
\text { PART B- }(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the positive real root of $\cos x-3 x+1=0$ by fixed point iterative method, correct to three places of decimals.
(ii) Find the inverse of the matrix by Gauss-Jordan method $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$.

Or

(b) (i) Solve the given system of equations by Gauss-Seidel method

$$
\begin{align*}
x+y+54 z & =110 \tag{8}\\
27 x+6 y-z & =85 \\
6 x+15 y+2 z & =72
\end{align*}
$$

(ii) Find the largest eigenvalue of the matrix $\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ and the corresponding eigenvector by power method.
12. (a) (i) Find $f(8)$ by Newton's divided difference formulae for the data: (8)

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

(ii) Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for

$$
\cdots \begin{array}{lcccc}
x: & 0 & 1 & 2 & .5 \tag{8}\\
y=f(x): & 2 & 3 & 12 & 147
\end{array}
$$

Or
(b) (i) Using Newton's forward interpolation formula, find the polynomial $f(x)$ satisfying the following data. Hence find $f(5)$.

$$
\begin{array}{lllll}
x: & 4 & 6 & 8 & 10 \tag{8}\\
f(x): & 1 & 3 & 8 & 10
\end{array}
$$

(ii) Obtain the cubic spline approximation for the function $y=f(x)$ from the following data, given that $y_{0}^{\prime \prime}=y_{3}^{\prime \prime}=0$.

$$
\begin{array}{llllc}
x: & -1 & 0 & 1 & 2 \tag{8}\\
y=f(x): & -1 & 1 & 3 & 35
\end{array}
$$

13. (a) (i) Apply Romberg's method to evaluate $\int_{4}^{5.2} \log _{e} x d x$ given that
x :
4.0
4.2
4.4
4.6
4.8
5.0
5.2
$\begin{array}{llllllll}\log _{e} x: & 1.3863 & 1.4351 & 1.4816 & 1.526 & 1.5686 & 1.6094 & 1.6486\end{array}$
(ii) From the table given below, find $f^{\prime}(30)$ by Newton's forward difference formula for first derivative :

$x:$	30	' 31	32	33	34	35	36
$f(x):$	85.90	86.85	87.73	88.64	89.52	90.37	91.1

Or
(b) Evaluate $\int_{2}^{2.6} \int_{4}^{4.4} \frac{d x d y}{x y}$ using Trapezoidal rule taking $h=0.2, k=0.3$.
14. (a) (i) Using Taylor's series method compute $y(0.1), y(0.2)$ if $y^{\prime}=1-2 x y$, $y(0)=0$.
(ii) Using R-K method of $4^{\text {th }}$ order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ given $y(0)=1$ at $x=0.2$. Take $h=0.2$.

Or
(b) (i) Given $y^{\prime \prime}+x y^{\prime}+y=0 ; y(0)=1, y^{\prime}(0)=0$ find the value of $y(0.1)$ by R-K method of $4^{\text {th }}$ order.
(ii) Given $\frac{d y}{d x}=\frac{\left(1+x^{2}\right) y^{2}}{2}, \quad y(0)=1, \quad y(.1)=1.06, \quad y(.2)=1.12$, $y(.3)=1.21$. Compute $y(.4)$ by Milne's predictor corrector formula.
15. (a) (i) Derive a finite difference scheme for solving a Poisson equation.
(ii) Given the wave equation $u_{t t}=u_{x x}, 0<x<1, t>0$ subject to the boundary conditions $u(0, t)=0, u(1, t)=0$ for $t>0$ and the initial conditions $u(x, 0)=x-x^{2}, \quad u_{t}(x, 0)=0$ for $0 \leq x \leq 1$ by taking $h=k=1 / 4$, compute the solution for the first 4 time steps.

Or
(b) Use Crank-Nicolson scheme to find the solution of the following initial .boundary value problem for one time step : $T_{t}=T_{x x}, 0<x<1, t>0$ subject to the initial condition $T(x, 0)=x-x^{2}$ for $0 \leq x \leq 1$ and the boundary conditions $T(0, t)=T(1, t)=0$ for $t>0$. Compute the solution by taking $h=1 / 4$ and $k=0.025$.

